
BCW61

PNP Silicon Epitaxial Planar Transistors

for general purpose switching and amplification.

These transistors are subdivided into three groups B, C and D, according to their current gain.

As complementary types the NPN transistors BCW60 are recommended.

1. Base 2. Emitter 3. Collector SOT-23 Plastic Package

Absolute Maximum Ratings (T_a = 25 °C)

[
Parameter	Symbol	Value	Unit	
Collector-Base Voltage	-V _{CBO}	32	V	
Collector-Emitter Voltage	-V _{CEO}	32	V	
Emitter-Base Voltage	-V _{EBO}	5	V	
Collector Current	-I _C	100	mA	
Peak Collector Current	-I _{CM}	200	mA	
Peak Base Current	-I _{BM}	100	mA	
Power Dissipation	P _{tot}	200	mW	
Junction Temperature	TJ	150	°C	
Storage Temperature Range	Τs	-65 to +150	°C	

Dated : 21/12/2005

Characteristics at $T_a = 25 \ ^{\circ}C$

Parameter		Symbol	Min.	Тур.	Max.	Unit
DC Current Gain						
at -V _{CE} = 5 V, -I _C = 10 μ A	BCW61B	h_{FE}	30	-	-	-
	BCW61C	h_{FE}	40	-	-	-
	BCW61D	h_{FE}	100	-	-	-
at -V _{CE} = 5 V, -I _C = 2 mA	BCW61B	h_{FE}	180	-	310	-
	BCW61C	h_{FE}	250	-	460	-
	BCW61D	h_{FE}	380	-	630	-
at -V _{CE} = 1 V, -I _C = 50 mA	BCW61B	h_{FE}	80	-	-	-
	BCW61C	h_{FE}	100	-	-	-
	BCW61D	h_{FE}	110	-	-	-
Collector Saturation Voltage		-V _{CEsat}	0.06	-	0.25	V
at -I _C = 10 mA, -I _B = 0.25 mA		• CESat	0.00	_	0.20	v
Collector Saturation Voltage		-V _{CEsat}	0.12	-	0.55	V
at -I _C = 50 mA, -I _B = 1.25 mA		• CESat				
Base Saturation Voltage		-V _{BEsat}	0.6	_	0.85	V
at -I _C = 10 mA, -I _B = 0.25 mA		• BESat	0.0		0.00	•
Base Saturation Voltage		-V _{BEsat}	0.68	_	1.05	V
at -I _C = 50 mA, -I _B = 1.25 mA		• BESat	0.00		1.00	•
Base-Emitter Voltage		-V _{BE(on)}	0.6	_	0.75	V
at -I _C = 2 mA, -V _{CE} = 5 V		• BE(011)	0.0		0.10	
Collector Base Cutoff Current		-I _{CBO}	-	_	20	nA
at -V _{CB} = 32 V					20	μA
at -V _{CB} = 32 V,T _j = 150 °C		-I _{CBO}	-	-	20	μΛ
Emitter-Base Cutoff Current) -	-	20	nA
at -V _{EB} = 4 V		-I _{EBO}				
Gain -Bandwidth Product		f	100	-	-	MHz
at $-V_{CE} = 5 V$, $-I_C = 10 mA$, f = 100 MHz		f⊤				
Collector-Base Capacitance		C		4 5		۶Ľ
at -V _{CB} = 10 V, f = 1 MHz		C _{CBO}	-	4.5	-	pF
Emitter-Base Capacitance		C_		11		nE
at -V _{EB} = 0.5 V, f = 1 MHz		C_{EBO}	-	11		pF
Noise figure		NF	-	2	6	dB
at -I _C = 200 μ A, -V _{CE} = 5 V, R _S = 2 KΩ, f =	= 1 KHz, Δf=200Hz	INF				
Thermal Resistance, Junction to Ambien	t	$R_{ hetaJA}$	-	-	500 ¹⁾	K/W

¹⁾ Transistor mounted on an FR4 printed-circuit board.

SEMTECH ELECTRONICS LTD. (Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

Dated : 21/12/2005